Smoothed Analysis of Local Search Algorithms

نویسنده

  • Bodo Manthey
چکیده

Smoothed analysis is a method for analyzing the performance of algorithms for which classical worst-case analysis fails to explain the performance observed in practice. Smoothed analysis has been applied to explain the performance of a variety of algorithms in the last years. One particular class of algorithms where smoothed analysis has been used successfully are local search algorithms. We give a survey of smoothed analysis, in particular applied to local search algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothed Performance Guarantees for Local Search

We study popular local search and greedy algorithms for standard machine scheduling problems. The performance guarantee of these algorithms is well understood, but the worst-case lower bounds seem somewhat contrived and it is questionable whether they arise in practical applications. To find out how robust these bounds are, we study the algorithms in the framework of smoothed analysis, in which...

متن کامل

A Hybrid Algorithm using Firefly, Genetic, and Local Search Algorithms

In this paper, a hybrid multi-objective algorithm consisting of features of genetic and firefly algorithms is presented. The algorithm starts with a set of fireflies (particles) that are randomly distributed in the solution space; these particles converge to the optimal solution of the problem during the evolutionary stages. Then, a local search plan is presented and implemented for searching s...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Towards Understanding the Smoothed Approximation Ratio of the 2-Opt Heuristic

The 2-Opt heuristic is a very simple, easy-to-implement local search heuristic for the traveling salesman problem. While it usually provides good approximations to the optimal tour in experiments, its worst-case performance is poor. In an attempt to explain the approximation performance of 2-Opt, we analyze the smoothed approximation ratio of 2-Opt. We obtain a bound of O(log(1/σ)) for the smoo...

متن کامل

SYMBIOTIC ORGANISMS SEARCH AND HARMONY SEARCH ALGORITHMS FOR DISCRETE OPTIMIZATION OF STRUCTURES

In this work, a new hybrid Symbiotic Organisms Search (SOS) algorithm introduced to design and optimize spatial and planar structures under structural constraints. The SOS algorithm is inspired by the interactive behavior between organisms to propagate in nature. But one of the disadvantages of the SOS algorithm is that due to its vast search space and a large number of organisms, it may trap i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015